X-ray Crystallography

Revealing Structure: Amy Thompson revisits the technique that science has overlooked.

X -ray crystallography is a fundamental method used to study atoms that make up a solid object. As the name suggests it involves the use of X-ray beams, which are fired at the solid that has been made into a crystal form. Information is received from the X-ray beams as they bounce off the crystal; this is recorded as a series of dots. These dots reveal the organisation of the atoms within the solid structure allowing scientists to see how a structure is arranged. It is a complex procedure based on highly intricate, yet fundamental mathematics that enable the prediction of a solid structure to be mapped out.
Continue reading “X-ray Crystallography”

Plenty of Room at the Bottom?

Visionary or mere daydreamer? Siddarth Trivedi investigates Feynman’s contributions to nanoengineering.

Richard Feynman was an American theoretical physicist well-known for his work in quantum electrodynamics for which he won a Nobel Prize in 1965, at the age of 47. The famous pictorial representation schemes in quantum physics that he developed, were later named after him as Feynman diagrams. In contrast, his contributions in the nanoengineering field are relatively unknown – in particular, his lecture There’s Plenty of Room at the Bottom given at Caltech in 1959. At the time, the atomic scale was mostly inaccessible, yet this lecture identified him as a visionary for the future of engineering. But was Feynman’s contribution actually important or was this simply the ramblings of a daydreaming physicist?
Continue reading “Plenty of Room at the Bottom?”